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A B S T R A C T

Morbidity of osteoporosis is increasing as the world population grows and ages, but bone mineral density (BMD)
as a common-used diagnostic indicator is not omnipotent in predicting the bone fragility. According to the
definition of osteoporosis by World Health Organization (WHO), the present hypothesis proposes an additional
fractal-dimension indicator less than 3 to measure the structural change of bones, and further to diagnose os-
teoporotic patients with complications, to which BMD is insensitive. Literature reports support that the fractal
dimension is more sensitive than BMD in specific cases. The hypothesis shows a promise not only in improving
the accuracy of screening osteoporotic patients as a complementary indicator to BMD, but also in evaluating
mechanical properties of osteoporotic bone and bone-repair effect of bone tissue engineering.

Introduction

Osteoporosis is a disease occurring in older people, and its mor-
bidity and mortality increase with the increasing aged population. In
accordance with the WHO definition [1], osteoporosis is characterized
by two factors: low bone mass and deteriorated micro-architecture
(Fig. 1, [2]), which enhance subsequent fracture risk due to bone fra-
gility. The present diagnosis on the osteoporosis mainly relies on the
BMD measurement of bone mass, but the measurement on the dete-
riorated micro-architecture is absent.

Diagnostic limitation of the BMD in clinics

Clinically, BMD value indicating the bone mineralization is often
employed to judge the occurrence of osteoporosis (i.e., T scores <
−2.5) and predict the risk of osteoporotic fracture (ROF). However,
BMD was not sensitive to the vertebral compression fracture (VCF)
resulting from osteoporosis in type 2 diabetic women [3], and it failed
to predict the ROF between the younger and elder postmenopausal
women [4]. Since BMD cannot effectively predict the ROF for the
specific cases, new measurement is needed for the diagnosis of osteo-
porosis.

Diagnostic necessity of structural change of osteoporotic bone

The micro-architecture of human bone is porous and inter-
connecting. Despite of the correlation between the BMD and the micro-
architecture, bone densitometry or related medical devices examining
the patients’ BMD tell a little about the structural change of abnormal
bone. Moreover, bone fragility is a result of the failed structural
adaptation, not just low bone mass, and the failed structural adaptation
results from a broken balance of bone remodeling [5]. It is the broken
balance that causes the osteoporosis, which features trabecular thinning
and re-patterning (the ratio of rod- and plate-like trabecula, [6]). Thus,
in terms of the structural change of abnormal bone, diagnosing osteo-
porosis from the standpoint of bone structure is necessary.

Fractal dimension describing structure of abnormal bone

Fractal geometry is often used to describe irregular porous media,
which are characterized by a non-Euclidean fractal dimension, and the
fractal dimension is a non-integer. In the fields of medicine, it has been
employed to treat the structure of abnormal bone, such as osteoarthritis
[7] and osteoporosis [8]. Then, addressing the diagnostic limitation of
the BMD, is the fractal dimension able to measure the structural change
of osteoporotic bones and overcome the limitation? If so, clinicians can
diagnose the osteoporosis and further predict bone fracture risk by
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combining the proposed fractal indicator with the conventional BMD
index, see Fig. 2.

The hypothesis

Considering the complex structure of bones, we hypothesize that the
fractal dimension of bone matrix (less than 3) could be a com-
plementary indicator to BMD to diagnose the osteoporosis. This is be-
cause the fractal dimension represents the changes of bone micro-
structure, and the BMD indicates the changes of bone mineralization,
thus, with both indicators, screening osteoporosis could be more ac-
curate, see Fig. 2. For osteoporosis, a greater fractal dimension of bone
matrix indicates smaller loss of bone (or smaller porosity), while a
smaller fractal dimension of bone matrix shows a greater loss of bone
(or larger porosity). This can be understood by an extreme case,
namely, when porosity in bone tends to 0, the fractal dimension ap-
proaches Euclidian dimension of 3.

Evaluation of the hypothesis

Fractal growth was considered as a design principle in biological
organisms [9]. As a fundamental parameter of fractal geometry, fractal
dimension is used to characterize the bone structure, and some studies
evidenced that the fractal dimension could be used as a novel strategy
to quantify the structural change of bone [10–13].

Calculation of the fractal dimension of bone

The fractal dimension is usually determined by a box-counting ap-
proach [13], and the classical expression is N∼ δ−D, where N is the
number of boxes with characteristic size δ used to cover porous media,
and D is the fractal dimension. Apparently, D is dependent of the
characteristic size δ. However, when calculating bone’s D on the basis of
medical image, we must bear in mind that an appropriate box size
should be selected [7], even though low resolution cannot produce a
significantly different fractal dimension of an image (or resolution-in-
dependent) to an extent [13]. For example, the appropriate size ranges
from 65 μm to 1000 μm for trabecular bone in the proximal femur [11],
whereas for subchondral trabecular bone in the severe osteoarthritis of
the hip, the size is between 30 μm and 4400 μm. Outside the scale, the

fractal dimension may be not correctly calculated [14]. This may be
because the box-counted trabecular bone is fractal within the range
[7,10]; otherwise, it is non-fractal.

With the box-counting method applied on few selected 2D radio-
graphical images, the values of the fractal dimension were calculated
between 1.05 and 1.84 [7,13]. Some literature performed sample
analysis in 3D space and reported that the fractal dimension was be-
tween 2.08 and 2.75 [15–18]. However, the examination of osteo-
porotic bones is always regional, and fractal analysis on few selected 2D
radiographical images cannot fully describe the structural change of the
examined region, thus, 3D sample analysis is more suitable. Moreover,
the increased porosity is negatively correlated to the fractal dimension
of solid phase [19]. In this sense, the fractal dimension of the cancellous
bone influenced by severe osteoarthritis is smaller than that of the
normal [7], and this supports the hypothesis, namely, a smaller fractal
dimension of bone matrix shows a greater loss of bone.

Higher sensitivity of the fractal dimension than BMD for postmenopausal
women

Compared to BMD, fractal dimension has been used to assess the
osteoporosis [20–23]. For example, it was reported that the fractal di-
mension was superior to the BMD by studying the 2D X-ray images of
control and osteoporotic groups [21,22]. In detail, a group of post-
menopausal women with osteoporotic vertebral fractures and an age-
matched control group of women were discriminated by evaluating the
fractal ability, and the result showed that the discrimination was
stronger than the commonly-used BMD [21]. This solves the problem of
the similar BMD between the younger and older groups of post-
menopausal women [4]. Also, the trabecular bone in knee osteoarthritis
was analyzed, and it was found that the fractal dimension quantifying
the structural changes of the trabecular bone is more sensitive to BMD
[22]. Moreover, the statistical significance of the fractal dimension for
the mandibular and alveolar bone of the postmenopausal women was
found [12,23]. In particular, the relationship between the fractal-re-
lated Hurst parameter H and BMD of the vertebrae, hip and wrist, were
explicitly discussed, and their independent and complementary in-
formation was presented, which indicated that the fractal indicator
along with BMD opens a new way to diagnose the osteoporosis [20]. In
addition, the accuracy of the fractal analysis on screening the osteo-
porotic patients could reach 95% [24], and this is higher than the BMD
result reported in [25], which identified the undiagnosed low BMD in
200,160 postmenopausal women over fifties. Anyhow, all the above-
mentioned evidences support the superiority of the fractal dimension to
BMD to diagnose the osteoporosis for postmenopausal women.

Consequences of the hypothesis and discussion

With the evidence by evaluating the applicability of the fractal di-
mension to distinguish the osteoporotic patients, the hypothesis may be
significant to clinicians, due to its non-invasiveness and simplification
on the complex bone structure. As a complementary indicator to BMD,
we must independently conduct correlation analyses of the fractal di-
mension and the BMD to osteoporosis. Then, the osteoporosis can be
discriminated through combining their correlations. However, under
the hypothesis, we cannot identify the cases in which the fractal di-
mension is more sensitive than the BMD, e.g. osteoporotic patients in
type 2 diabetic and postmenopausal women [3,4], and other cases in
which the fractal dimension is less sensitive. Moreover, the threshold
values of the fractal dimension like T scores of the BMD should be
determined. The limitations could be overcome by a large number of
cases studies.

Not only for the clinical diagnosis of osteoporosis, the hypothesis
could also be used in evaluating the effect of scaffold-guided bone re-
pair or regeneration in tissue engineering. This is achieved by the
fractal-dimension compatibility between the after-repaired sites and

Fig. 1. Morphologies of health and osteoporotic bone [2].

Fig. 2. Complementary diagnosis of fractal dimension and BMD.
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their surrounding host bone tissues [26]. Besides, it can also be used to
correlate the fractal dimension to the mechanical properties of the os-
teoporotic bone, such as bone's Young's modulus [18,27] and strength
[27], which can be non-invasively obtained by existing imaging tech-
nologies. These materials parameters are very important for the global
assessment for bone-related diseases, in particular for the osteoporosis.
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